
edi Documentation
Release 0.11.3

Matthias Luescher

Mar 03, 2018

Contents

1 Embedded Development Infrastructure - edi 3
1.1 License . 3
1.2 Contributions . 3
1.3 More Information . 3

2 Getting Started 5
2.1 Prerequisites . 5
2.2 Installing edi from the PPA . 5
2.3 Working with the edi Source Code . 6
2.4 Setting up ssh Keys . 6
2.5 Building a First Container . 7
2.6 Exploring the Container . 7

3 Configuration Management 9
3.1 Introduction . 9
3.2 Yaml Based Configuration . 10
3.3 Jinja2 . 14
3.4 Overlays . 14
3.5 Plugins . 16

4 Command Pipeline 17

5 Upgrade Notes 19
5.1 LXD Storage Pool . 19

6 Reference List 21
6.1 Debian . 21
6.2 Python . 21
6.3 LXC/LXD . 21
6.4 Restructured Text . 22

7 Command Cheat Sheet 23
7.1 edi . 23
7.2 Debian . 23
7.3 Python . 24
7.4 Documentation . 24
7.5 git . 24

i

ii

edi Documentation, Release 0.11.3

Contents:

Contents 1

edi Documentation, Release 0.11.3

2 Contents

CHAPTER 1

Embedded Development Infrastructure - edi

Driven by the DevOps mindset edi helps you to streamline your embedded development infrastructure. To achieve
this goal, edi leverages top-notch open source technologies:

• Ansible is the tool of choice for doing the configuration management.

• LXD allows you to run multiple OS instances on your development host. For complex target system deploy-
ments LXD is a great choice too.

• Yaml and Jinja2 are the consistent way to write edi configuration files and Ansible playbooks.

• Python is the language and ecosystem that makes the system integration efficient.

• edi is supposed to be used on the popular Ubuntu Linux distribution.

• By default, edi generates Debian based target systems.

1.1 License

edi is licensed under the LGPL license.

1.2 Contributions

You are welcome to contribute to edi. In case of questions you can contact me by e-mail (lueschem@gmail.com).

1.3 More Information

For more information please visit http://www.get-edi.io.

3

https://travis-ci.org/lueschem/edi
https://www.ansible.com
https://www.linuxcontainers.org
http://docs.ansible.com/ansible/YAMLSyntax.html
http://jinja.pocoo.org/
https://www.python.org
https://www.ubuntu.com
https://www.debian.org
mailto:lueschem@gmail.com
http://www.get-edi.io

edi Documentation, Release 0.11.3

4 Chapter 1. Embedded Development Infrastructure - edi

CHAPTER 2

Getting Started

The following setup steps have been tested on Ubuntu 16.04 and on Ubuntu 17.10.

2.1 Prerequisites

1. This first step is only required on Ubuntu 16.04 and can be skipped if you are on a more recent Ubuntu version.
edi requires features that got introduced with Ansible 2.1. On Ubuntu 16.04 you can enable xenial-backports
and then install Ansible as follows:

sudo apt install ansible/xenial-backports

2. Install lxd:

sudo apt install lxd

3. Close and re-open your user session to apply the new group membership (this guide assumes that you are either
member of the group sudoers or admin, for details please read the linux containers documentation).

4. Initialize lxd:

sudo lxd init

The default settings are ok. Use the storage backend “dir” if there is no zfs setup on your computer.

2.2 Installing edi from the PPA

For your convenience, you can directly install edi from a ppa:

1. Add the edi-snapshots ppa to your Ubuntu installation:

sudo add-apt-repository ppa:m-luescher/edi-snapshots
sudo apt-get update

5

https://linuxcontainers.org/lxd/getting-started-cli/
https://launchpad.net/~m-luescher/+archive/ubuntu/edi-snapshots

edi Documentation, Release 0.11.3

2. Install edi:

sudo apt install edi

2.3 Working with the edi Source Code

Hint: You can skip this section if you just want to use edi without having a look at the source code.

1. Clone the source code:

git clone https://github.com/lueschem/edi.git

2. Change into the edi subfolder:

cd edi

3. Install various packages that are required for the development of this project:

sudo apt install -y git-buildpackage dh-make equivs && sudo mk-build-deps -i
→˓debian/control

4. Build the edi Debian package (just to verify that everything works):

debuild -us -uc

5. Make the development setup convenient by adding some environment variables:

source local_setup

2.4 Setting up ssh Keys

If you plan to access edi generated containers or target systems using ssh, it is a good idea to create a ssh key pair.
Hint: edi versions greater or equal than 0.11.0 have a secure by default setup of ssh and disable password based login.

1. Review if you already have existing ssh keys:

ls -al ~/.ssh

Valid public keys are typically named id_rsa.pub, id_dsa.pub, id_ecdsa.pub or id_ed25519.pub.

2. If there is no valid ssh key pair, generate one:

$ ssh-keygen -t rsa -b 4096 -C "you@example.com"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/YOU/.ssh/id_rsa):
Created directory '/home/YOU/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Hint: If you decided to use a passphrase and do not want to reenter it every time, it is a good idea to use a
ssh-agent.

6 Chapter 2. Getting Started

edi Documentation, Release 0.11.3

2.5 Building a First Container

1. Create an empty project folder:

cd ~/
mkdir my-first-edi-project
cd my-first-edi-project

2. Generate a configuration for your project:

edi config init my-project debian-stretch-amd64

3. Build your first (development) lxc container named my-first-edi-container:

sudo edi -v lxc configure my-first-edi-container my-project-develop.yml

2.6 Exploring the Container

1. Log into the container using your current user name (Note: This user is only available within a development
container.) Use the password ChangeMe!:

lxc exec my-first-edi-container -- login ${USER}

2. Change the password for your container user:

passwd

3. Install a package within the container:

sudo apt install cowsay

4. Share a file with the host (Note: The folder ~/edi-workspace is shared with your host.):

cowsay "Hello world!" > ~/edi-workspace/hello

5. Leave the container:

exit

6. Read the file previously created within the container:

cat ~/edi-workspace/hello

7. Enter the container as root (Note: This is useful if you have a container without your personal user.):

lxc exec my-first-edi-container -- bash

8. And leave it again:

exit

9. Get the IP address of the container:

2.5. Building a First Container 7

edi Documentation, Release 0.11.3

lxc list my-first-edi-container

10. Enter the container using ssh:

ssh CONTAINER_IP

11. And leave it again:

exit

8 Chapter 2. Getting Started

CHAPTER 3

Configuration Management

3.1 Introduction

The management of complex embedded software product line projects is a main focal point of edi. Such projects may
be managed by many people that are spread over the world. Maintaining a reproducible environment for all involved
parties is a key success factor for such projects.

edi will help the different stakeholders to manage their use cases. Here is an example with four stakeholders:

• The developer needs a system that comes with development tools, libraries, header files etc. Also an integrated
development environment (IDE) might be part of his wish list. A pre configured user account is an additional
plus.

• The maintainer of the CI server needs a similar setup like the developer. However - to speed up the build process
- he might want to use images that come without a heavy weight IDE.

• In theory, the tester should do his tests on a production image. Unfortunately production images might be
hardened and therefore the tester is unable to do some introspection of the system. Therefore the tester is
actually asking for a production image with some “add-ons” like ssh access and a simple editor.

• The operator wants a rock solid production image with all development back doors removed. Logging output
should be reduced to a minimum to protect the flash storage.

All involved parties have the common concern that they want to maintain consistency across the whole project(s). edi
achieves this by managing the different use cases with a single project setup. The following four pillars are in place to
enable reusability and extensibility, reduce duplicate code and guarantee consistency:

• Yaml Based Configuration: The whole project configuration is written in yaml. Yaml is easy to read and write
for both humans and machines.

• Jinja2: Sometimes there is a need to parametrize parts of the configuration. The jinja2 template engine allows
you to do this.

• Overlays: Depending on your use case you might want to change some specific aspects of the project configu-
ration. The overlays allow you to customize a use case globally, per user or per host machine.

9

edi Documentation, Release 0.11.3

• Plugins: While every embedded project is somehow different, they all share some commonalities. Plugins make
the commonalities shareable among multiple projects while they allow the full customization of the unique
features of a project.

3.2 Yaml Based Configuration

Within an empty directory the following command can be used to generate an initial edi configuration:

edi config init my-project debian-stretch-amd64

This command generates a configuration with four placeholder use cases:

• my-project-run.yml: This configuration file covers the run use case. It is the configuration that the customer will
get.

• my-project-test.yml: The test use case shall be as close as possible to the run use case. A few modifications that
enable efficient testing will differentiate this use case from the run use case.

• my-project-build.yml: The build use case covers the requirements of a build server deployment.

• my-project-develop.yml: The develop use case satisfies the requirements of the developers.

Please note that the above use cases are just an initial guess. edi does not at all force you to build your project upon
a predefined set of use cases. It just helps you to modularize your different use cases so that they do not diverge over
time.

The configuration is split into several sections. The following command will dump the merged and rendered configu-
ration of the use case develop for the given command:

edi lxc configure --config my-container my-project-develop.yml

3.2.1 general Section

The general section contains the information that might affect all other sections.

edi supports the following settings:

key description
edi_compression The compression that will be used for edi (intermediate) artifacts. Possible values are gz

(fast but not very small), bz2 or xz (slower but minimal required space). If not specified,
edi uses xz compression.

edi_lxc_stop_timeout The maximum time in seconds that edi will wait until it forces the shutdown of the lxc
container. The default timeout is 120 seconds.

edi_required_minimal_edi_versionDefines the minimal edi version that is required for the given configuration. If the edi
executable does not meet the required minimal version, it will exit with an error. If not
specified, edi will not enforce a certain minimal version. A valid version string value looks
like 0.5.2.

edi_lxc_network_interface_nameThe default network interface that will be used for the lxc container. If unspecified edi will
name the container interface lxcif0.

edi_config_management_user_nameThe target system user that will be used for configuration management tasks. Please note
that direct lxc container management uses the root user. If unspecified edi will name the
configuration management user edicfgmgmt.

10 Chapter 3. Configuration Management

edi Documentation, Release 0.11.3

3.2.2 bootstrap Section

This section tells edi how the initial system shall be bootstrapped. The following settings are supported:

key description
architecture The architecture of the target system. For Debian possible values are any supported archi-

tecture such as amd64, armel or armhf.
repository The repository specification where the initial image will get bootstrapped from. A valid

value looks like this: deb http://deb.debian.org/debian/ stretch main.
repository_key The signature key for the repository. Attention: If you do not specify a key the downloaded

packages will not be verified during the bootstrap process. Hint: It is a good practice to
download such a key from a https server. A valid repository key value is: https://
ftp-master.debian.org/keys/archive-key-8.asc.

tool The tool that will be used for the bootstrap process. Currently only debootstrap is
supported. If unspecified, edi will choose debootstrap.

Please note that edi will automatically do cross bootstrapping if required. This means that you can for instance
bootstrap an armhf system on an amd64 host.

If you would like to bootstrap an image right now, you can run the following command:

sudo edi image bootstrap my-project-develop.yml

3.2.3 qemu Section

If the target architecture does not match the host architecture edi uses QEMU to emulate the foreign architecture. edi
automatically detects the necessity of an architecture emulation and takes the necessary steps to set up QEMU. As
QEMU evolves quickly it is often desirable to point edi to a very recent version of QEMU. The QEMU section allows
you to do this. The following settings are available:

key description
package The name of the qemu package that should get downloaded. If not specified edi assumes

that the package is named qemu-user-static.
repository The repository specification where QEMU will get downloaded from. A valid value looks

like this: deb http://deb.debian.org/debian/ stretch main. If unspeci-
fied, edi will try to download QEMU from the repository indicated in the bootstrap section.

repository_key The signature key for the QEMU repository. Attention: If you do not specify a key the
downloaded QEMU package will not be verified. Hint: It is a good practice to download
such a key from a https server. A valid repository key value is: https://ftp-master.
debian.org/keys/archive-key-8.asc.

3.2.4 Ordered Node Section

In order to understand the following sections we have to introduce the concept of an ordered node section. In Unix
based systems it is quite common to split configurations into a set of small configuration files (see e.g. /etc/
sysctl.d). Those small configuration files are loaded and applied according to their alphanumerical order. edi does
a very similar thing in its ordered node sections. Here is an example:

3.2. Yaml Based Configuration 11

edi Documentation, Release 0.11.3

Listing 3.1: Example 1

dog_tasks:
10_first_task:
job: bark

20_second_task:
job: sleep

Listing 3.2: Example 2

dog_tasks:
20_second_task:
job: sleep

10_first_task:
job: bark

In both examples above the dog will first bark and then sleep because of the alphanumerical order of the nodes
10_first_task and 20_second_task. The explicit order of the nodes makes it easy to add or modify a certain
node using Overlays.

3.2.5 Plugin Node

Most of the ordered node sections contain nodes that specify and parametrize plugins.

A typical node looks like this:

lxc_profiles:
10_first_profile:

path: path/to/profile.yml
parameters:

custom_param_1: foo
custom_param_2: bar

Such nodes accept the following settings:

key description
path A relative or absolute path. Relative paths are first searched within

edi_project_plugin_directory and if nothing is found the search falls back to
edi_edi_plugin_directory. The values of the plugin and project directory can be
retrieved as follows: edi lxc configure --dictionary SOME-CONTAINER
SOME_CONFIG.yml.

parameters An optional list of parameters that will be used to parametrize the given plugin.
skip True or False. If True the plugin will not get applied. If unspecified, the plugin will

get applied.

To learn more about plugins please read the chapter Plugins.

3.2.6 lxc_templates Section

The lxc_templates section is an ordered node section consisting of plugin nodes. Please consult the LXD documenta-
tion if you want to write custom templates.

12 Chapter 3. Configuration Management

edi Documentation, Release 0.11.3

3.2.7 lxc_profiles Section

The lxc_profiles section is an ordered node section consisting of plugin nodes. Please consult the LXD documentation
if you want to write custom profiles.

3.2.8 playbooks Section

The playbooks section is an ordered node section consisting of plugin nodes. Please consult the Ansible documentation
if you want to write custom playbooks.

3.2.9 postprocessing_commands Section

The postprocessing_commands section is an ordered node section consisting of plugin nodes. The post processing
commands can be written in any language of choice. In contrast to the other plugin nodes the post processing command
nodes require an explicit declaration of the generated artifacts. Please read the chapter Plugins for more details.

3.2.10 shared_folders Section

The shared_folders section is an ordered node section that can be used to specify shared folders between LXC con-
tainers and their host.

Shared folders are very convenient for development use cases. Please note that edi will automatically turn any container
that uses shared folders into a privileged container. This will facilitate the data exchange between the host and the
target system. It is advisable to use shared folders together with the development_user_facilities playbook plugin.

A shared folder section can look like this:

shared_folders:
edi_workspace:
folder: edi-workspace
mountpoint: edi-workspace

Let us assume that the name of the current development user is johndoe and that his home directory is /home/
johndoe. The development_user_facilities playbook plugin will automatically make sure that the user johndoe
will also exist within the container. The shared_folders section will then make sure that the host folder /home/
johndoe/edi-workspace (folder) will be shared with the container using the container directory /home/
johndoe/edi-workspace (mountpoint).

The shared folder nodes accept the the following settings:

key description
folder The name of the host folder within the home directory of the current user. If the folder does

not exist, edi will create it.
mountpoint The name of the mount point within the container home directory of the current user. If

the mount point does not exist edi will display an error. Hint: It is assumed that the mount
points within the container will get created using an appropriate playbook. The develop-
ment_user_facilities playbook plugin will for instance take care of mount point creation.

skip True or False. If True the folder will not be shared. If unspecified, the folder will get
shared.

3.2. Yaml Based Configuration 13

edi Documentation, Release 0.11.3

3.3 Jinja2

A closer look at the configuration created in the previous chapter reveals some parametrization: The file
my-project-develop.yml contains a line that dynamically derives the name of an artifact from the project name
(sample_output: {{ edi_configuration_name }}.result). Jinja2 will replace the expression {{
edi_configuration_name }} with the name of the configuration.

The following command can be used to display the dictionary that is available for Jinja2 operations when loading the
configuration my-project-develop.yml:

edi image create --dictionary my-project-develop.yml

Since the dictionary is context sensitive to the sub-command you have to specify the full command with the addi-
tional option --dictionary to display the appropriate dictionary. The option --dictionary is available for all
commands that deal with configuration.

my-project-develop.yml contains an even more complicated parametrization in the lxc_profiles section:

{% if edi_lxd_version is defined and (edi_lxd_version.split('.')[0] | int >= 3 or edi_
→˓lxd_version.split('.')[1] | int >= 9) %}
200_default_root_device:
path: lxc_profiles/general/default_root_device/default_root_device.yml

{% endif %}

This conditional code will make sure that an additional LXD profile gets generated and applied for recent LXD
versions.

Plugins can even further benefit from Jinja2 since there are additional dictionary entries available. The option
--plugins will output the details:

edi image create --plugins my-project-develop.yml

If supported for the plugin, edi will preview the plugin rendered by Jinja2 when using the above command. Given
the plugin is an Ansible playbook, the whole plugin dictionary will be made available to the playbook by means of the
Ansible command line option --extra-vars.

3.4 Overlays

As soon as a single edi project configuration should support multiple use cases the use of overlays will help to
get rid of duplicate configuration code. When using overlays, it is a good practice to put most of the configura-
tion code into a single yaml file. In the example configuration used throughout the previous chapters this is the file
configuration/base/my-project.yml. A use case like my-project-develop.yml is then just a sym-
bolic link to this configuration file. The differentiation between the use cases happens in the global overlay (e.g.
configuration/overlay/my-project-develop.global.yml): edi will initially load the base config-
uration and then merge it with the global overlay. The configuration done in the global overlay takes precedence
over the configuration done in the base configuration.

edi furthermore supports two additional overlays: The configuration can be further tuned per host (the overlay file
shall then end with .$(hostname).yml, e.g. .buildd.yml) and per user (the overlay file shall then end with
.$(id -un).yml, e.g. .johndoe.yml). The user overlay takes the highest precedence.

The following picture illustrates how yaml configuration files will get merged:

The merged configuration can be displayed using a command like:

14 Chapter 3. Configuration Management

edi Documentation, Release 0.11.3

3.4. Overlays 15

edi Documentation, Release 0.11.3

edi lxc configure --config my-dev-container my-project-develop.yml

The usage of overlays is optional and in any case it is not necessary to specify all possible overlays.

3.5 Plugins

TODO

16 Chapter 3. Configuration Management

CHAPTER 4

Command Pipeline

edi is designed to divide big tasks into small sub commands. Each sub command will initiate the transition into a new
state of available artifacts:

If the desired original state has not yet been reached, edi will make sure that all necessary sub commands get executed
to reach the desired state.

Example:

The following command will make sure that - after a successful execution - a fully configured lxd container is available:

sudo edi lxc configure NAME CONFIG

If the intermediate artifacts are to some degree not available, edi will execute all required sub commands - if needed it
will start with the image bootstrap sub command.

Please note that the intermediate artifacts are not checked if they are fully up to date. If you want to make sure that all
intermediate artifacts for a given configuration get recreated then execute the following command:

edi clean CONFIG

The above command will delete the previously generated artifacts. However, it will not delete named lxd containers.

17

edi Documentation, Release 0.11.3

18 Chapter 4. Command Pipeline

CHAPTER 5

Upgrade Notes

5.1 LXD Storage Pool

Newer lxd versions (>=2.9) require the configuration of a storage pool. edi (>=0.6.0) ships with a plugin for a default
storage pool. You can add the following lines to the lxc_profiles section of your existing configuration if you want to
upgrade to a newer version of lxd:

lxc_profiles:

...

{% if edi_lxd_version is defined and (edi_lxd_version.split('.')[0] | int >= 3 or edi_
→˓lxd_version.split('.')[1] | int >= 9) %}
020_default_root_device:
path: lxc_profiles/general/default_root_device/default_root_device.yml

{% endif %}

...

Please note that newly created configurations will already contain this conditional inclusion of the storage pool defini-
tion. If the above configuration is missing, edi lxc configure ... will print an error message:

$ sudo edi -v lxc configure my-project my-project-test.yml
...
Going to launch container.
INFO:root:Running command: ['sudo', '-u', 'lueschm1', 'lxc', 'launch', 'local:my-
→˓project-test_edicommand_lxc_import', 'my-project', '-p', 'lxcif0_
→˓0c4a88500d0670949c8f']
Creating my-project
Error: Launching image 'my-project-test_edicommand_lxc_import' failed with the
→˓following message:
error: No root device could be found.

On Ubuntu 16.04 the following command can be used to upgrade the lxd installation:

19

edi Documentation, Release 0.11.3

sudo apt install lxd/xenial-backports lxd-client/xenial-backports

20 Chapter 5. Upgrade Notes

CHAPTER 6

Reference List

6.1 Debian

• Debian Python Policy

• Building Debian Packages with git

6.2 Python

6.2.1 Packaging

• Packaging and Distributing Projects using setuptools.

• Using setuptools_scm to derive version from git tag.

6.2.2 Documentation

• Sphinx - a Python documentation generator.

6.2.3 Libraries

• “Requests is an elegant and simple HTTP library for Python, built for human beings.”

• Jinja2 is a template engine for Python.

6.3 LXC/LXD

• The LXD blog gives a very good introduction to lxc/lxd 2.0.

21

https://www.debian.org/doc/packaging-manuals/python-policy/
https://wiki.debian.org/PackagingWithGit
http://python-packaging-user-guide.readthedocs.io/en/latest/distributing/
https://github.com/pypa/setuptools_scm/
http://www.sphinx-doc.org/en/stable/
http://docs.python-requests.org/en/latest/index.html
http://jinja.pocoo.org/
https://www.stgraber.org/2016/03/11/lxd-2-0-blog-post-series-012/

edi Documentation, Release 0.11.3

6.4 Restructured Text

• Wikipedia about ReStructuredText.

• reStructuredText Markup Specification.

22 Chapter 6. Reference List

https://en.wikipedia.org/wiki/ReStructuredText
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

CHAPTER 7

Command Cheat Sheet

7.1 edi

Enable bash completion during development and add the edi bin folder to the PATH:

source local_setup

Run the short tests (including coverage):

py.test-3 --cov=edi --cov-report=html

Run all tests (including coverage):

sudo py.test-3 --all --cov=edi --cov-report=html

Check source code using flake8:

flake8 --max-line-length=120 .

7.2 Debian

Build an edi .deb package directly:

debuild -us -uc

Build an edi .deb package using git-buildpackage:

gbp buildpackage

Install the resulting package:

23

edi Documentation, Release 0.11.3

sudo dpkg -i ../edi_X.X.X_all.deb

7.3 Python

Create a source distribution of edi:

python3 setup.py sdist

Install edi in editable mode (development setup):

pip3 install -e .

7.4 Documentation

Build the shinx html documentation of edi:

cd docs && make html

7.5 git

Initial personalization of git:

git config --global user.email "lueschem@gmail.com"
git config --global user.name "Matthias Luescher"

24 Chapter 7. Command Cheat Sheet

	Embedded Development Infrastructure - edi
	License
	Contributions
	More Information

	Getting Started
	Prerequisites
	Installing edi from the PPA
	Working with the edi Source Code
	Setting up ssh Keys
	Building a First Container
	Exploring the Container

	Configuration Management
	Introduction
	Yaml Based Configuration
	Jinja2
	Overlays
	Plugins

	Command Pipeline
	Upgrade Notes
	LXD Storage Pool

	Reference List
	Debian
	Python
	LXC/LXD
	Restructured Text

	Command Cheat Sheet
	edi
	Debian
	Python
	Documentation
	git

